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Abstract: Although the Lepton Flavor Violating (LFV) decay µ+ → e+γ is forbidden

in the Standard Model (SM), it can take place within various theories beyond the SM. If

the branching ratio of this decay saturates its present bound [i.e., Br(µ+ → e+γ) ∼ 10−11],

the forthcoming experiments can measure the branching ratio with high precision and

consequently yield information on the sources of LFV. In this paper, we show that for

polarized µ+, by studying the angular distribution of the transversely polarized positron

and linearly polarized photon we can derive information on the CP-violating sources beyond

those in the SM. We also study the angular distribution of the final particles in the decay

µ+ → e+
1 e−e+

2 where e+
1 is defined to be the more energetic positron. We show that

transversely polarized e+
1 can provide information on a certain combination of the CP-

violating phases of the underlying theory which would be lost by averaging over the spin

of e+
1 .
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1. Introduction

While the Standard Model (SM) preserves the lepton flavor, its various extensions such

as supersymmetry or large extra dimensions can lead to Lepton Flavor Violating (LFV)

rare decays µ+ → e+γ and µ+ → e+e−e+ detectable in the forthcoming experiments. The

present experimental bounds on the branching ratios of these processes are [1]

Br(µ+ → e+γ) < 1.2 × 10−11 Br(µ+ → e+e+e−) < 1.0 × 10−12 at 90% C.L.

The MEG experiment at PSI [2], which is under construction, will be able to probe

Br(µ+ → e+γ) down to 10−14. Thus, if this branching ratio saturates the present bound

(i.e., Br(µ+ → e+γ) ∼ 10−11) the future searches will enjoy high statistics and can make

precise measurement limited only by systematics. Moreover, since the muons are produced

by decay of stopped pions (at rest), they will be almost 100% polarized. Thus, studying the

angular distribution of the final positrons, we can learn about phenomena such as parity

violation, through which more information on the sources of LFV can be extracted [3].

Among the various extensions of the SM that can give rise to lepton flavor violating phe-

nomena, in the literature the Minimal Supersymmetric Standard Model (MSSM) and large

extra dimensions have received particular attention. It is well-known that in both cases

integrating out the heavy states of the model, the LFV Lagrangian responsible for µ → eγ

can be written as

L = ARµ̄RσµνeLFµν + ALµ̄LσµνeRFµν + A∗
RēLσµνµRFµν + A∗

LēRσµνµLFµν (1.1)

where σµν = i
2
[γµ, γν ] and Fµν is the photon field strength: Fµν = ∂µεν − ∂νεµ. Although

Lagrangian in eq. (1.1) is not the most general form of the effective LFV Lagrangian,

throughout this paper we consider only these terms. In the appendix, we consider a more

general form of the effective Lagrangian and show that (1.1) is indeed the dominant part.
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It can be shown that averaging over the spins of the final particles, Lagrangian (1.1)

yields [4]

dΓ(µ+ → e+γ)

d cos θ
=

1

8π
m3

µ

[

|AR|2(1 − Pµ cos θ) + |AL|2(1 + Pµ cos θ)
]

, (1.2)

where θ is the angle between the momentum of the positron and the spin of the muon

and Pµ is the polarization of the muon. Notice that integrating over cos θ, we arrive at

Γ(µ+ → e+γ) = (m3
µ/4π)(|AL|2 + |AR|2). Thus, by measuring the total decay rate to e+γ,

we can only measure |AL|2 + |AR|2. However, eq. (1.2) shows that by studying the angular

distribution of the final particles with a moderate angular resolution, |AR|2 and |AL|2
can be separately derived. Information on |AL|2/|AR|2 can be translated into information

on the sources of lepton flavor violation in the underlying theory. Studying the angular

distribution can therefore be considered as a tool to discriminate between different scenarios

beyond the SM [4, 3]. Moreover, in case of low statistics, studying the angular distribution

can help us to veto the background [4]. Notice, however, that with this method only the

absolute values of AL and AR can be derived and no information on the relative phase of

AL and AR can be extracted. Whereas the relative phase of AL and AR carry valuable

information on the sources of CP-violation in the underlying theory. In this paper, we

show that if in addition to the angular distribution of the final particles in the LFV muon

decay, we also measure their polarization, we will be able to extract the phase of A∗
LAR.

Remembering the fact that the state-of-the-art LHC experiment will most likely not be

able to measure these phases and for measuring such phases a more advanced collider,

ILC, is proposed [5], the possibility of measuring these phases by muon decay experiments

seems more exciting. In section 2, we show that by studying the angular distribution of

transversely polarized positrons and photons we can extract the relative phase of AL and

AR. In section 3, we discuss the possibility of extracting the same information by studying

the angular distribution of the final positrons produced in µ+ → e+e−e+. We then compare

the two methods and discuss the advantages and disadvantages of each one. We summarize

our results in section 4.

2. Lepton flavor violating rare decay µ → eγ

Consider an anti-muon at rest [i.e., Pµ+ = (mµ, 0, 0, 0)] which decays into a positron and a

photon with definite spins of ~se and ~sγ , respectively. Using the effective Lagrangian (1.1),

we can calculate the µ → eγ decay rate:

dΓ[µ+(Pµ+) → e+(Pe+ , ~se+)γ(Pγ , ~sγ)]

d cos θ
=

m3
µ

8π

[

|α+|2|AL|2(1 + Pµ cos θ) sin2 θs

2
+ (2.1)

|α−|2|AR|2(1 − Pµ cos θ) cos2
θs

2

+PµRe[α+α∗
−A∗

LAReiφs ] sin θ sin θs

]

, (2.2)

where Pµ is the polarization of the anti-muon, θ is the angle between the directions of the

spin of the anti-muon and the momentum of the positron, and θs is the angle between the
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spin of the positron and its momentum. In the above formula, φs is the azimuthal angle that

the spin of the final positron makes with the plane of spin of the muon and the momentum

of the positron (to be specific to measure φs, the coordinate system has been defined as

follows: ẑ = ~pe+/| ~pe+ | and ŷ = ~se+ × ẑ/|~se+ × ẑ|). Finally, α+ and α− give the polarization

of the final photon: εµ = (0, α+ + α−, (α+ − α−)i, 0)/
√

2 with
√

|α+|2 + |α−|2 = 1.

Summing over the spins of the final particles, we arrive at the well-known formula

shown in eq. (1.2) which does not contain any information on the relative phase of AL and

AR. Moreover, from eq. (2.1) it is clear that in order to be sensitive to the phase of ALA∗
R

the combination α+α∗
− sin θs should be nonzero. Remember that α− = 0 and α+ = 0

respectively correspond to positive and negative helicities. On the other hand, sin θs = 0

corresponds to either a right-handed positron (for θs = 0) or to a left-handed positron (for

θs = π). Thus, in order to extract the relative phase of AL and AR from µ+ → e+γ we have

to study the final positrons and photons whose spins are not parallel to their momenta.

Let us now consider the CP conjugate of the same process. It is straightforward to

prove that the partial decay rate of the CP conjugate process, dΓ̄/d cos θ, is given by (2.1)

replacing AL → A∗
L and AR → A∗

R. In other words, we obtain

dΓ

d cos θ
− dΓ̄

d cos θ
=

m3
µ

4π
PµIm[α+α∗

−eiφs ]Im[ALA∗
R] sin θ sin θs. (2.3)

As expected the difference is given by the imaginary part of ALA∗
R. Eq. (2.1) shows that

if we can run the experiment both in the muon and anti-muon modes, we will be able to

derive Im[ALA∗
R] even without studying the angular distribution of the final lepton:

∫

dΓ

d cos θ
d cos θ −

∫

dΓ̄

d cos θ
d cos θ =

m3
µ

8
PµIm[α+α∗

−eiφs ] sin θsIm[ALA∗
R].

At first sight, it may seem that the above relation is at odds with the generalized optical

theorem [6] which states that the total decay rate of a particle and an anti-particle should

be equal. Notice, however that we have not summed over the final spins so the integrals on

the left-hand side do not give the total rate of µ → eγ. In fact, the above equation shows

that summing over the spin of the photon and/or the positron the difference vanishes, as

expected from the generalized optical theorem. The effect is maximal for linearly polarized

photons (i.e., α− = ±α+ = 1/
√

2) and for the final leptons polarized in the direction

perpendicular to the direction of the spin of muon and the momentum of the final lepton

(i.e., θs = π/2, φs = π/2).

If we have only the anti-muon mode available (or only the muon mode available), we

can still extract Im[ALA∗
R] by studying the angular distribution of the final leptons. Notice

that
∫ −1/2

−1

dΓ

d cos θ
d cos θ −

∫ 1/2

−1/2

dΓ

d cos θ
d cos θ +

∫ 1

1/2

dΓ

d cos θ
d cos θ =

m3
µ

8π
Pµ

(

π

6
−
√

3

2

)

× (2.4)

×Re[α+α∗
−eiφsA∗

LAR] sin θs,

which shows that sensitivity to Im[A∗
LAR] is maximal again for linearly polarized photons

(i.e., α− = ±α+ = 1/
√

2) and leptons polarized in the direction perpendicular to the
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direction of the spin of muon and the momentum of the final lepton (i.e., θs = π/2, φs =

π/2).

Measuring the transverse polarization of the final lepton is feasible. In fact, this

technique has long been employed to measure the Michel parameters [7]. Measuring the

linear polarization of photon at energies of ∼ 50 MeV also seems practical [8]. As recently

shown in [9] equipping the experiments with photon polarimeters can have implications for

studying the radiative muon decay, too.

The phases of the underlying theory that manifest themselves in the LFV effective

Lagrangian (1.1) can also induce a contribution to the electric dipole moment of the elec-

tron, de. In the following, we estimate the effect on de and compare it with the present

bound.1 We can write the effective couplings AR and AL in terms of the parameters of the

underlying theory as follows

AL ∼ λ2

16π2

(m2
µe)L

(m2
NEW)2

mµ AR ∼ λ2

16π2

(m2
µe)R

(m2
NEW)2

mµ , (2.5)

where λ and mNEW are respectively the coupling and the scale of the new physics. The

factor 16π2 in the denominators are the loop factors which appear when we integrate out the

heavy states at the one loop level. (m2
µe)L and (m2

µe)R are the sources of LFV at the left and

right-handed sectors, respectively. The presence of mµ reflects the chirality flipping nature

of the corresponding effective operators. (We have assumed that the relation between

chirality-flipping and fermion mass is maintained in the framework of the new physics.)

Finally, the power of mNEW in the denominator is fixed by dimensional analysis. At the

one loop level, the phases of (m2
µe)L and (m2

µe)R can induce a contribution to de which can

be estimated as

de ∼ e
λ2

16π2

Im[(m2
µe)

∗
L(m2

µe)R]

(m2
NEW)3

mµ .

Inserting AL and AR of eq. (2.5) in the above equation and using Γ(µ → eγ) = m3
µ(|AR|2 +

|AL|2)/(4π), we find

de = (10−32 e cm)

(

0.5

λ2

)

Im[ALA∗
R]

|AL|2 + |AR|2
( mNEW

100 GeV

)2 Br(µ → eγ)

10−11
.

Thus, for supersymmetric models with λ = g and mNEW < few TeV the effect of these

phases will be at least three orders of magnitude below the present bound [1] and too small

to be probed even by forthcoming experiments [10]; that is while the method proposed in

this paper can help us to derive information on the relative phase of AL and AR.

3. Three body decay µ
+

→ e
+

e
−

e
+

The effective Lagrangian in eq. (1.1) can give rise to µ+ → e+e−e+ through the penguin

diagrams shown in figure 1. The penguin diagrams are not the only diagrams that con-

tribute to the decay mode µ+ → e+e−e+ (see the appendix for more details). However, we

1I would like to thank the anonymous referee for pointing out the relevance of this discussion.
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µ
+

µ
+

e
+

1

e
+

2

e
−

e
+

2

e
+

1

e
−

a) b)

Figure 1: Penguin diagrams contributing to µ+ → e+

1 e+

2 e−. The vertices marked with boxes are

the LFV vertices from interaction terms in eq. (1.1).

~P
e
+

1

~P
e
+

2

~sµ+ θ θe

φ

Figure 2: This figure schematically depicts the direction of the momenta of the final particles in

the LFV decay µ+ → e+

1 e−e+

2 relative to the spin of the anti-muon in its rest frame.

generally expect the contribution from the penguin diagrams to be dominant because for

the final lepton with energy close to mµ/2, as we will see momentarily, the photon in the

penguin diagram can go almost on shell, resulting in an enhancement by ln(mµ/me). In

this section, we will assume that the penguin diagrams shown in figure 1 are the only ones

contributing to µ+ → e+e−e+. This is a reasonable approximation for the MSSM as well

as a class of models which we describe in the appendix.

In fact, we expect about 90 % of the three-body µ+ → e+e−e+ decays to result in a

lepton with energy ≃ mµ/2. In this section, we show that if we measure the spin of the

final lepton with energy mµ/2 as well as the angular distributions of the final particles, we

can extract information on the relative phase of AL and AR.

Consider an anti-muon at rest with a spin at the (x̂, ẑ) plane which makes an angle of

θ with the z-axis:

Pµ+ = (mµ, 0, 0, 0) v̄µ+ =
√

mµ(− sin
θ

2
, cos

θ

2
, sin

θ

2
,− cos

θ

2
), (3.1)

where Pµ+ and vµ+ are respectively the four-momentum and the Dirac spinor of the anti-

muon. Suppose the anti-muon decays into an electron and two positrons with the following
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momenta:

Pe+
1

= (E1, 0, 0,
√

E2
1 − m2

e) Pe+
2

= (E2, |~Pe+
2

| sin θe cos φ, |~Pe+
2

| sin θe sin φ, |~Pe+
2

| cos θe),

(3.2)

where E2
2 = |~Pe+

2
|2 +m2

e. The above angles are illustrated in figure 2. The four-momentum

of the final electron is determined by the energy-momentum conservation. The diagrams

contributing to µ+ → e+
1 e−e+

2 are shown in figure 1. The amplitude corresponding to

diagram 1-a can be written as

eūeγ
νve+

2

igνµ

q2
v̄µ+σµα(ALPR + ARPL)ve+

1

qα, (3.3)

where qα is the four-momentum of the virtual photon in the penguin diagram: q ≡ Pµ+ −
Pe+

1
. Combining eqs. (3.1) and (3.2), we find q2 = m2

µ + m2
e − 2E1mµ. As a result, in

the limit E1 → mµ/2, q2 ≪ m2
µ and the amplitude in eq. (3.3) is considerably enhanced.

That is while the propagator of the virtual photon appearing in figure 1-b is given by

1/(Pµ+ − Pe+
2
)2 ∼ 1/m2

µ so, in the limit E1 → mµ/2, the effect of diagram 1-b can be

neglected in comparison to that of diagram 1-a. Moreover, in this limit, the effects of the

LFV terms other than the term in eq. (1.1) are lower at least by a factor of m2
e/m

2
µ and

can be also neglected (see the appendix for more details). Let us define dΓMax/d cos θdφ

as partial decay rate of µ+ into a positron with energy close to mµ/2 and spinor ve+
1

=√
2E1(0, de, ce, 0)

T :

dΓMax

d cos θdφ
=

∑

spins

∫ Emax

mµ/2−∆E

∫ mµ/2

mµ/2−E1

dΓ

dE2dE1d cos θdφ
dE2dE1, (3.4)

where ∆E ≪ mµ and Emax ≃ mµ/2 − 4m2
e/mµ. Notice that we have integrated and

summed over the energies and spins of the pair of e+
2 and e− but not over those of e+

1 . It

is straightforward to show that

dΓMax

d cos θdφ
=

αm3
µ

192π3

[

|AL|2|ce|2(1 + Pµ cos θ) + |AR|2|de|2(1 − Pµ cos θ) (3.5)

+Pµ sin θ (cos(2φ)Re[ARA∗
Ldec

∗
e] + sin(2φ)Im[ARA∗

Ldec
∗
e])] log

mµ∆E

4m2
e

,

where, as shown in figure 2, θ is the angle between the spin of the anti-muon and the

momentum of e+
1 and φ is the azimuthal angle of the momentum of e+

2 measured from the

plane made by the spin of µ+ and the momentum of e+
1 [see eq. (3.2)].

After integrating over φ and cos θ and summing over the spin of e+
1 (i.e., summing over

states ce = 1, de = 0 and de = 1, ce = 0), we will arrive at the familiar formula in the

literature (e.g., see [11]). However, in this case the information on the phase of ARA∗
L will

be lost. In order to extract this phase, we have to be able to measure the spin of e+
1 as well

as the direction of the momenta of the final states relative to the spin of the anti-muon.

Let us now define the following ratio

R =

∫ +1

−1
d cos θ[

∫ 2π
0

dΓMax

d cos θdφ sgn(tan φ)dφ]
∫ +1

−1
d cos θ[

∫ 2π
0

dΓMax

d cos θdφsgn(tan(φ + π/4))dφ]
. (3.6)
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Notice that sgn(tan φ) in the integral is equal to ±1 depending on the quadrant that φ

belongs to. In principle, if the polarization of the anti-muon is large (i.e., Pµ is about

100%), this ratio can be measured in the lab. Using eq. (3.5), we can show that

R =
Im[ARA∗

Ldec
∗
e]

Re[ARA∗
Ldec∗e]

,

which directly gives the phase of ARA∗
L for a transversely polarized positron, de = ce =

1/
√

2.

Now let us compare the advantages and disadvantages of each decay mode. In general,

we expect
Br(µ+ → e+e+e−)

Br(µ+ → e+γ)
≃ α

3π

[

log

(

m2
µ

m2
e

)

− 11

4

]

≃ 0.0061.

Thus, measurement of µ+ → e+e−e+ will suffer from a higher statistical uncertainty.

On the other hand, to extract the relative phase of AL and AR by studying µ+ → e+γ in

addition to measuring the spin of e+, it is necessary to measure the spin of γ, too. Whereas

in the case of µ+ → e+e−e+, one has to measure only the spin of the final positron with

energy close to mµ/2.

As is well-known in the case of a three-body decay mode, we can have CP- and T-odd

observable quantities, even if the spins of the final particles are averaged over. However,

the above discussion shows that if the effective Lagrangian (1.1) is the only source of

LFV, once we average over the final spins, the CP- and T-odd effects will disappear.

In fact, as shown in [12, 13], if the four-fermion LFV terms listed in the appendix are

also present, the CP- and T-odd effects will persist even after averaging over the final

spins. However, we generally expect these effects to be suppressed roughly by a factor

of Cimµ/[AL,R log(4m2
e/mµ∆E)] compared to the effect we have discussed in the present

paper. Notice that the two effects are sensitive to different combinations of the CP-violating

phases and can be thus considered as complementary.

4. Concluding remarks

In this paper, we have suggested a new method to derive information on the sources of

CP-violation beyond those in the SM. The method is based on studying the rare LFV

decay of polarized muons. We have performed our analysis within a general effective LFV

Lagrangian so our results apply to any beyond SM scenario that violates the lepton flavor

by adding new particles at energies higher than the electroweak symmetry breaking scale

(e.g., supersymmetry, large extra dimensions).

We have first studied the LFV rare decay µ → eγ and shown that provided that the

polarization of the final particles are not parallel to their momentum (e.g., if e and γ are

respectively transversely and linearly polarized), by studying the angular distribution of e

and the photon relative to the polarization of µ, we can extract information on the CP-

violating phases. We have also shown that if both muon and anti-muon modes are available,

the same information can be derived by comparing Γ(µ+ → e+
/
γ/) and Γ(µ− → e−

/
γ/) where

the subscript / indicates that the spin of the particle is not parallel to its momentum.

– 7 –
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We have estimated de induced by the CP-violating phases that the present method

aims to measure and found that the effect is at least three orders of magnitude below the

present bound. In other words, the phases of order of π/2 associated with the µe mixing

are not ruled out by the present bound on de.

We have also studied the µ+ → e+
1 e−e+

2 decay where e+
1 is defined to be the more

energetic positron. The amplitude of µ+ → e+
1 e−e+

2 is severely enhanced if the energy of

e+
1 is close to mµ/2. Thus, we expect the majority of e+

1 to have energies close to mµ/2. We

have focused on decays with such kinematics and proposed a new method for extracting

information on the CP-violating phases which is based on studying the angular distribution

of the final particles. We have shown that with transversely polarized e+
1 one can extract

information on a combination of the CP-violating phases that is impossible to achieve if

e+
1 with helicity ±1 is employed or if the final spins are averaged over. Notice that in this

method measuring the spin of only one of the final particles (i.e., e+
1 ) will be enough. We

have discussed the differences and synergies between this method and the one discussed

in [12, 13].

A. LFV effective Lagrangian

In the appendix, we discuss possible LFV operators that appear by integrating out the

heavy states within theories such as the MSSM and show that the effect of eq. (1.1) on the

rare LFV muon decays is dominant.

In the literature (see e.g., [11]), it has been shown that in the context of the MSSM, in-

tegrating out the heavy supersymmetric states the effective LFV Lagrangian of the electron-

muon system will, in addition to eq. (1.1), contain

εαµ̄q2γα(BLPL + BRPR)e + H.c., (A.1)

where εα is the photon field, q is the momentum of the photon, PL (PR) is left (right)

projection matrix and BL and BR are couplings with dimension of [mass]−2. This effective

term will have no impact on µ → eγ simply because for on-shell photon (q2 = 0), this

term vanishes. However, in general it can contribute to µ+ → e+e−e+ through a penguin

diagram. Notice that unlike the case of eq. (3.3), in this case the penguin diagram does

not diverge as the photon propagator goes on-shell. Moreover, for most of the parameter

space of the MSSM BL,Rmµ ≪ AL,R so the effect of eq. (A.1) is further suppressed. As a

result, for calculating ΓMax [defined in eq. (3.4)] we can neglect the effect of eq. (A.1).

The effective LFV effective Lagrangian will also contain the following four-fermion

terms that can in principle contribute to µ+ → e+e−e+:

L = C1(µ̄ReL)(ēReL) + C2(µ̄LeR)(ēLeR)

+ C3(µ̄RγµeR)(ēRγµeR) + C4(µ̄LγµeL)(ēLγµeL)

+ C5(µ̄RγµeR)(ēLγµeL) + C6(µ̄LγµeL)(ēRγµeR) + H.c. (A.2)

Again, we expect that the effect of the above four-fermion terms on Γmax [see eq. (3.4)]

to be negligible compared to the terms in eq. (1.1). That is because, unlike the penguin

– 8 –
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diagrams in figure 1, the diagrams corresponding to the above four-fermion interaction

terms do not diverge for E1 → mµ/2. Moreover, for the major part of the parameter space

of the MSSM (with tan β ∼ 10) the four-fermion effective couplings are smaller than the

dipole couplings; i.e., Cimµ/AL,R ∼ 1/ tan β.

Consider a general scenario in which new particles with mass mNEW ≫ mµ are added

to the SM. Suppose that all LFV as well as LF conserving couplings of the new particle

with the SM particles are of order of λ. Within such a scenario we can write

AL, AR ∼ λ2

16π2

mµ

m2
NEW

and Ci ∼
λ4

16π2

1

m2
NEW

.

Notice that here, unlike the case of (2.5), we have assumed that the suppression of Br(µ →
eγ) is due to the smallness of the couplings (i.e., λ2/(4π) ≪ α) rather than small mixing

[i.e., (m2
eµ)L,R/m2

NEW ≪ 1]. The bound on Br(µ → eγ) can be translated into a bound on

λ ∼ 10−3
( mNEW

100GeV

)

4
√

Br(µ → eγ)/10−11.

Thus, the contribution of the four-fermion terms to the amplitude of µ+ → e+e−e+

in comparison to that of the couplings in (1.1) is further suppressed by a factor of

mµCi/[(4πα)AL,R] ∼ λ2/(4πα) . 10−4.

One should notice that the most general effective LFV Lagrangian, in addition to the

terms discussed above, contains extra terms. For example, it is possible to have terms such

as

ǫαβµν µ̄pαγβ(DLPL + DRPR)eFµν + H.c.,

where pα is the four-momentum of the electron. However, studying the effective LFV

Lagrangian in its most general form is beyond the scope of this paper.

Acknowledgments

I would like to thank T. Mori whose fruitful comments motivated me to perform this

analysis. I am grateful to M. Peskin for useful comments and encouragement. I also

appreciate M. M. Sheikh-Jabbari for careful reading of the manuscript, useful comments

and specially pointing out the discussion in the last part of the appendix. I would like

to thank the anonymous referee for pointing out the relevance of the last discussion in

section 2.

References

[1] Particle Data Group, W.M. Yao et al., Review of particle physics, J. Phys. G 33 (2006)

1.

[2] http://meg.web.psi.ch/index.html;

MEG collaboration, M. Grassi, The MEG experiment at PSI: status and prospect, Nucl.

Phys. 149 (Proc. Suppl.) (2005) 369.

– 9 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG33%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG33%2C1
http://meg.web.psi.ch/index.html
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C149%2C369
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C149%2C369


J
H
E
P
0
7
(
2
0
0
7
)
0
5
4

[3] Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys.

73 (2001) 151 [hep-ph/9909265];

J.L. Feng, Theoretical motivations for lepton flavor violation, hep-ph/0101122.

[4] Y. Kuno and Y. Okada, µ → eγ search with polarized muons, Phys. Rev. Lett. 77 (1996) 434

[hep-ph/9604296].

[5] See for example, R.M. Godbole, CP-violation in supersymmetry and the LHC, Czech. J.

Phys. 55 (2005) B221 [hep-ph/0503088];

S. Heinemeyer and M. Velasco, Exploring complex phases of the MSSM at future colliders,

hep-ph/0506267;

O. Kittel, CP-violation in production and decay of supersymmetric particles,

hep-ph/0504183.

[6] S. Weinberg, The quantum theory of fields, Cambridge University Press, Cambridge U.K.

(1995).

[7] H. Burkard et al., Muon decay: measurement of the transverse positron polarization and

general analysis, Phys. Lett. B 160 (1985) 343.

[8] P.F. Bloser, S.D. Hunter, G.O. Depaola and F. Longo, A concept for a high-energy

gamma-ray polarimeter, astro-ph/0308331; A concept for a high-energy gamma-ray

polarimeter, astro-ph/0308331;

F. Adamyan et. al, A photon beam polarimeter based on nuclear e+e− pair production in an

amorphous target, Nucl. Instrum. Meth. A546 (2005) 376.

[9] E. Gabrielli and L. Trentadue, Light mesons and muon radiative decays and photon

polarization asymmetry, hep-ph/0507191.

[10] D. Kawall, F. Bay, S. Bickman, Y. Jiang and D. DeMille, Progress towards measuring the

electric dipole moment of the electron in metastable PBO, AIP Conf. Proc. 698 (2004) 192;

D. DeMille, S. Bickman, P. Hamilton, Y. Jiang, V. Prasad, D. Kawall and R. Paolino, Search

for the electron electric dipole moment, AIP Conf. Proc. 842 (2006) 759;

see however, S.K. Lamoreaux, Solid state systems for electron electric dipole moment and

other fundamental measurements, nucl-ex/0109014.

[11] J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton-flavor violation via right-handed

neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442

[hep-ph/9510309].

[12] Y. Okada, K.-i. Okumura and Y. Shimizu, µ → eγ and µ → 3e processes with polarized

muons and supersymmetric grand unified theories, Phys. Rev. D 61 (2000) 094001

[hep-ph/9906446].

[13] R. Kitano and Y. Okada, P and T odd asymmetries in lepton flavor violating tau decays,

Phys. Rev. D 63 (2001) 113003 [hep-ph/0012040].

– 10 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C73%2C151
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C73%2C151
http://arxiv.org/abs/hep-ph/9909265
http://arxiv.org/abs/hep-ph/0101122
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C77%2C434
http://arxiv.org/abs/hep-ph/9604296
http://arxiv.org/abs/hep-ph/0503088
http://arxiv.org/abs/hep-ph/0506267
http://arxiv.org/abs/hep-ph/0504183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB160%2C343
http://arxiv.org/abs/astro-ph/0308331
http://arxiv.org/abs/astro-ph/0308331
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUIMA%2CA546%2C376
http://arxiv.org/abs/hep-ph/0507191
http://arxiv.org/abs/nucl-ex/0109014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD53%2C2442
http://arxiv.org/abs/hep-ph/9510309
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C094001
http://arxiv.org/abs/hep-ph/9906446
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C113003
http://arxiv.org/abs/hep-ph/0012040

